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Abstract

With the present-day rapid evolution of digital technology, images have become one of the most important means of com-
munication and information carrier in our society. Since the last decade, with the emergence of social networking sites like
Facebook, Instagram, Twitter, etc., there has been a huge increase in the amount of information exchanged in the form of
digital images, on a regular basis. While traditionally we might have had faith in the credibility of these images, today’s dig-
ital technology has begun to erode that faith. Before sharing an image over social networks, editing it with relevant software
application has become one of the simplest things to do today. While not many people do this with any sinister intent behind,
there has been a significant increase in cybercrimes related to malicious image manipulation and sharing. To this end, image
splicing has emerged as one of the major forms of image manipulation attacks, among others today. This demands investigation
of intrinsic differences between authentic and forged images and hence development of automated splicing detection tools.
Here, we propose a blind image splicing detection technique that employs a deep convolutional residual network architecture
as a backbone, followed by a fully connected classifier network, that classifies between authentic and spliced images. The
classifier networks have been evaluated using the CASIA v2.0 dataset. Both are proven to yield accuracies more than 96%
on an average, having surpassed the state-of-the-art results.
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1 Introduction

With the advancement of digital technology in the current
information age, digital image tampering has become an easy
nut to crack for any common man. Such development in the
image manipulation techniques has both constructive and
destructive aspects, particularly concerning digital content
security. On the one hand, it promotes showcasing ideas of
visual art and beautifying existing images, whereas, on the
other hand, it makes tampering image contents extremely
easy for adversaries, in a visually imperceptible way. In
recent years, the vast availability of low-cost sophisticated
photo editing tools has largely triggered the production of
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natural-looking, aesthetic images, almost leaving no visi-
ble clue of tampering. As a result, anyone with a computer,
mobile, tablet, or laptop can easily manipulate the contents
of an image to spread fake information. This threatens the
authenticity of digital images in broadcast, media, medicine,
and legal industries. In the domain of digital forensics, the
major types of image manipulation attacks that we deal
with in the present day are: image splicing [1], copy-move
forgery [2], retouching [3], and erase-fill [4]. If the attack
involves replacing some content/object within a digital image
with some other content/object, taken from a different loca-
tion within the same image, then the attack is termed as
copy-move forgery. On the other hand, attacks where some
new content from an external source is intelligently added
to an authentic image with the malicious intention of pos-
ing this composite image as a natural one, and with visually
imperceptible traces of the manipulation, are termed as splic-
ing or compositing attack. Figure 1, sampled from CASIA
v2.0, illustrates one of these common types of image manip-
ulation: the copy-move forgery, whereas Fig. 2 presents an
example of image splicing.
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Fig.1 Anexample of copy-move forgery: a Authentic image; b Forged
image generated by copying the right half of the authentic image, flip-
ping it horizontally, and then pasting it to cover the left half of the same
image

Fig.2 Anexample of image splicing: a Authentic image 1; b Authentic
image 2; ¢ Forged image generated by compositing images 1 and 2, after
required re-scaling of the copied object

In this work, we deal with automated detection of image
splicing attack, using deep neural network architecture for
automated feature learning. Image splicing detection has
major applications in the forensic industry. Most signifi-
cant application domains include legal, media and broadcast
industries. Given how low-cost and widely available image
processing software and tools have become presently, it has
become extremely challenging and crucial to authenticate a
given image before it is considered for further processing in
sensitive applications such as the above. More so, given the
fact that digital images play the role of primary evidences
in many legal cases, as well as media. Also, given the large
boom of social networks in the recent days, and the large
volumes of images and videos shared online on a day-to-
day basis by every common man, forged images (including
spliced images) can lead to deception and delusion of masses.
Hence, it is the call of the hour to have automated tools in
place, to detect such common forgeries with highest accu-
racy.

Till the dawn of the deep learning period, image classifi-
cation tasks have mostly been performed using hand-crafted
image features. Such state-of-the-art forensic imaging tech-
niques primarily consist of (a) pixel-based methods, (b)
geometry-based methods, (c) camera-based methods, (d)
format-based methods, and (e) physics-based methods. [5].
Pixel-based image forensic techniques detect anomalies
focusing solely on the spectral information in each pixel
[6]. Geometry-based methods determine measurements of
objects in the universe and their locations relative to the
camera [7]. Camera-based methods are majorly based on
color camera response, filter array, chromatic aberration,
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and sensor noise Camera-based techniques [8]. Format-
based techniques exploit the statistical correlations formed
by a particular lossy compression scheme [9]. Physics-based
methods explicitly model anomalies by visualizing physical
object interaction with the environment [10]. All such tech-
niques, primarily exploit the visual information content of an
image that might not be robust against subsequent process-
ing, such as compression, deform, edge softening, blurring,
and smoothing.

With the advent of convolutional neural networks (CNNs),
automated feature engineering has been extensively explored
in all spheres of machine learning. This has impacted the
domain of image forensics as well. In recent years, in com-
parison with the aforementioned conventional approaches to
image forgery detection, a number of researchers have suc-
cessfully investigated the applicability and utility of CNNs in
the field of image forensics. Some of the noteworthy works in
the domain of image forgery detection using CNNs include
[11,12].

In this paper, we address the issue of image splicing detec-
tion using convolutional neural networks, where we model
the given challenge as a two-way classification problem. We
break the given problem into smaller sub-problems, viz. (A)
dataset preparation for feature extraction and classification
using the extracted features and (B) finally detecting the
spliced and the authentic images. Here we use two different
networks for two major tasks above. Initially, state-of-the-
art ResNet-50 network [13] has been used as the backbone
of our proposed model, which majorly allows feature extrac-
tion from the raw input images. The backbone is followed by
a fully connected binary classifier network which is trained
to detect whether the image is authentic or spliced. To sum-
marize, our major contributions in this paper are as follows:

— We propose a deep learning CNN model for image
splicing detection, which mainly consists of a backbone
network for extraction of features, followed by a ANN-
based binary classifier to detect spliced images.

— The proposed scheme saves us from the tedious job of
handpicking image features and automatically generates
adeep-learned representation of the features from unpro-
cessed input images.

— For the classification problem, we propose the use of a
fully connected artificial neural network in place of tra-
ditional classifiers such as the Support Vector Machine.

The proposed model has been thoroughly analyzed in terms
of performance and compared with the current state of the
art.

The rest of the paper is structured according to this. In
Sect. 2, we outline the existing related literature. In Sect. 3, we
present and describe in detail our proposed model along with
dataset and parameter selection. Section 4 sums up our exper-
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imental analysis and results and discusses those in detail.
Finally, the conclusions as well as the directions for future
research are described in Sect. 5.

2 Related works

In this section, we present an overview of the significant
research works related to image forensics and image splicing
detection in particular. Most of the works listed here focus
on image feature based machine learning approach for image
forgery detection.

Zhang et al. [14] proposed a model which focuses on
moment features extracted from multi-size block discrete
cosine transform (MBDCT) along with image quality metrics
(IQMs), which are purposed toward spliced image detec-
tion. This model analyses an original image and its tampered
version to measure their statistical differences. The authors
performed their experiments on the Columbia Dataset [15]
and attained an accuracy of 89.16%.

Muhammad et al. [16] explored the steerable pyramid
transform (SPT) and local binary pattern (LBP) to present
their scheme for image forgery detection. They basically
applied the steerable pyramid transform on the Cb and Cr
channels of the YCbCr image color space, followed by a
description of the texture in each SPT subband using LBP
histograms, to produce a feature vector. Finally, they uti-
lize support vector machine (SVM) as a classifier which
detects image forgery based on the feature vector. The
authors reported an accuracy of 97.33% on the CASIA v2.0
dataset [17].

Pham et al. [18] proposed an efficient algorithm for image
splicing detection based on Markov features that prepares
a feature vector combining two types of Markov features,
coefficient-wise and block-wise in the discrete cosine trans-
form (DCT) domain extracted by the model. This is followed
by a support vector machine (SVM) which takes the feature
vector and predicts a query image to be original or forged.
They used CASIA v2.0 as their dataset and achieved an accu-
racy of 96.90%.

Rao and Ni [19] presented a deep learning-based novel
image splicing detection scheme which employs a convo-
lutional neural network (CNN). Here the CNN is utilized
to extract hierarchical representations from the input RGB
color images. The pre-trained CNN majorly extracts dense
features from the input images as a patch descriptor. For
the SVM classification, the final discriminative features is
obtained by exploring a feature fusion technique. The pro-
posed work achieves an accuracy of 97.83% on CASIA v2.0
Dataset.

Pomari et al. [20] proposed a novel approach for detecting
splicing in digital photographs by putting together the high
representational capacity of illuminant maps and convolu-

tional neural networks as a way to learn the most important
traces of a forgery, directly from the available training data.
Their work proposes a method that eliminates the tedious pro-
cess of feature engineering, allows to identify forged regions
within an image, and is proven to yield a classification accu-
racy of more than 96%.

Tripathi et al. [21] use a methodology which extracts
texture-based features from the forged and authentic images
as gray level run length matrix, computed in four directions.
Thereafter, a fuzzy support vector machine has been utilized
as the classifier, with a high generalization capability. This
method is trained and tested on CASIA v1.0 Dataset [17] and
the final performance, in terms of F1 score, is reported to be
0.89.

Wuetal. [11] proposed an extension to the image splicing
detection problem where they have worked with two dif-
ferent images and estimated the chance of one image being
tampered using the other. They also introduced a deep neural
network for the detection and localization of image splic-
ing, called deep matching and validation network (DMVN).
They used CASIA v2.0 and the Nimble 2017 [22] datasets in
their experiments. This scheme produces precision and recall
results of 94.15% and 79.08%, respectively.

In [12], Ahmed et al. proposed a new image forgery detec-
tion scheme which uses ResNet-Conv model [13] as the
backbone of the proposed network architecture. This back-
bone majorly focuses on generating the initial feature map,
which is then used to train a Mask-RCNN model to generate
masks for spliced region in the forged images. They per-
formed a comparative study by experimenting with different
initialization techniques and different backbone architec-
tures. Finally, training and evaluation of the proposed model
is done on a huge dataset developed from COCO dataset.
Their scheme yields an AUC value of 0.967.

Traditional feature-based image forgery detection schemes
have used image features such as color and texture features
like SPT and LBP and frequency domain features like DCT
and DWT, with support vector machine and other classi-
fiers. Apart from the traditional approaches, with the advent
of deep learning, researches have successfully explored its
applicability and usefulness in the domain. In our work, we
propose a deep learning-based CNN model for feature extrac-
tion and image splicing detection, which has been described
in detail next.

3 Proposed deep CNN-based image splicing
detection model

In this work, we model image splicing detection as a
binary classification problem, based on deciding whether
or not a given image is spliced. In this paper, we pro-
pose an automated image splicing detection scheme using
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Table 1 Dimension of datasets

# Authentic samples

# Spliced samples # Total samples

. . Dataset
used in our experiments
Original CASIA v2.0 7491
Sampled CASIA v2.0 5123

5123 12614
5123 10246

deep CNN-learned features and ANN-based classifier. The
proposed approach involves two main steps: (A) feature engi-
neering and (B) classification. Initially, a pre-trained deep
CNN model (referred here as the backbone CNN) is used to
extract significant image features with respect to the given
problem. Following this, the feature vectors produced by the
backbone CNN are fed to a binary classification network,
which is trained on labeled image samples to identify the
query images as original or spliced.

The proposed method is elaborated in detail in this section,
along with experiments conducted to assess the effectiveness
of the proposed model in detecting spliced images. Our model
is trained on CASIA v2.0 dataset following the current state
of the art, as CASIA v2.0 is considered as a very standard
and versatile dataset for image splicing detection, that con-
sists of numerous examples of copy-move forgery and image
splicing.

3.1 Dataset description

As stated above, we have conducted our experiments on
the benchmark image forgery detection dataset, viz., CASIA
v2.0 [17]. This dataset is a collection of 12,614 color images,
out of which there are 7,491 authentic and the rest 5,123 are
forged. All of these forged images have gone through differ-
ent post-processing techniques (such as, resize, deform, and
blurring) which give them a more realistic visual appearance.
It was originally published for use in research concerning
both the problems of detecting image splicing and copy-
move forgery. Images comprising the dataset depict sizes
range from 240 x 160 to 900 x 600 pixels. There are com-
pressed images in JPEG format along with uncompressed
ones in TIFF format.

In order to keep the comparison fair with the other
researchers, we initially take the entire dataset of 12,614
images and split it into three mutually exclusive subsets to
create the training, validation, and test datasets in the ratio
80:10:10. However, it is worth mentioning that in the orig-
inal dataset, the approximate ratio of authentic images to
spliced images is about 3:2, i.e., during training, the model
gets to come across an authentic image 1.5 times more than a
spliced image. In order to avoid the unwanted classifier bias
toward the authentic images, in our second experiment, we
randomly select equal numbers of authentic and tampered
images for our experiments and create a sampled dataset of
10,246 images and divide them into three non-overlapping
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subsets: Training, Validation, and Test. Table 1 sums up the
dimensions of the datasets used in our experiments.

3.2 Proposed CNN architecture

It is evident that detecting a spliced image through bare eyes
might be tough, but locating the forged areas of a given
spliced image by the human visual cortex is not impossi-
ble. Convolutional neural nets are inspired by the principal
of operation of the human visual cortex. CNN is therefore
the ideal deep learning model for this work. The model pro-
posed in this paper, uses a convolutional neural network as its
backbone, followed by a dense classifier network. Figure 3
depicts the proposed model architecture.

The backbone of the proposed network is based on the
existing implementation of ResNet-50 architecture [13].
ResNet-50 considers input images of both length and width
as multiples of 32, and 3 as the width of the channel. The
network uses 7 x 7 and 3 x 3 kernels to perform the ini-
tial convolution and max-pooling, respectively. ResNet-50
then contains five different stages [12]. The two foundational
components of the ResNet-50 are convolutional blocks and
identity blocks. The structure of these two components is
similar, comprising of convolutional layers with batch nor-
malization and activation functions. The only difference lies
in the extra bridge in the convolutional blocks, which adds
residuals to the output layer learned in the input layer. Stages
2—4 includes both of these blocks, while stage 1 has only
identity blocks. Moving from one stage to another doubles
the width of the channel and reduces the input size to half.
The network finally has an average pooling layer at stage
5 followed by a fully connected layer having 1000 output
neurons.

We excluded the top layer to customize the ResNet-50 net-
work according to our specification by setting include_top
as False and added our classifier network to it because our
images can be classified only into two categories: Authen-
tic and Spliced, while the ImageNet weights work for 1000
output categories.

Our classifier network contains two fully connected dense
layers each having 1000 neurons with a ‘ReL.U’ activation
function followed by a ‘sigmoid’ output neuron. Our experi-
ments are conducted both on the original CASIA v2.0 dataset
and the sampled CASIA v2.0 dataset, described in Sect. 3.1.
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Fig.3 The proposed model

In this work, the proposed model is provided with input
images of dimension 224 x 224 x 3, which produces a binary
output based on the two classes: Authentic and Spliced.

3.3 Implementation details and platform used

The implementation of the proposed method is constituted of
three steps: the dataset formulation, training of the model, and
finally the classification. Figure 4 presents the flow diagram
of the proposed method. The proposed model has been imple-
mented using Keras and evaluated on an Intel(R) Core(TM)
i5-1035G4 CPU @1.10GHz 1.50GHz.

Initially, using the ImageDataGeneratoxr(-) function
from the Keras preprocessing library, the datasets are pre-
pared as mentioned in Table 1. A batch size of 20 is used for
mini-batch training.

Our model uses the ResNet-50 model to extract the ini-
tial image features meaningful to the classification. This is
based on the existing implementation of ResNet-50. In order
to build our desired classification network, we exclude the
fully connected layers on top of the ResNet-50 architecture.
The proposed model was initialized using ImageNet weights.
We couldn’t apply the same for the output layers because our
images can be classified only into two categories: Authentic
and Spliced, while the ImageNet weights work for 1000 out-
put categories. For the optimization of the proposed model,
we have used the Adam optimization with a learning rate of
0.001 for faster convergence. Since the training set is not large
enough, there is always a chance of overfitting. To prevent
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Fig.4 Flow diagram of the proposed method

this, cross-validation on the validation dataset is performed
in conjunction with training, and we incorporate early stop-
ping with a patience of 10, so that it monitors the validation
loss and terminates the training if the validation loss is not
improved within 10 consecutive epochs. (An epoch signifies
one complete iteration over the entire training sample space.)

In both of our experiments, we use the transfer learning
method to use the pre-trained ResNet-50 backbone loaded
with the ImageNet weights to extract the image features.
These weights of the pre-trained backbone are frozen by
setting trainable as ‘False.” This stops any updates to the pre-
trained weights during the training as we do not want to train
the ResNet layers. Our goal is to leverage the knowledge
learned by the deep neural network trained on ImageNet.
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Table 2 Performance of the

proposed model Accuracy Precision Recall F1 score AUC score
Experiment 1 0.9645 0.9669 0.9415 0.9540 0.9755
Experiment 2 0.9208 0.9244 0.9167 0.9205 0.9525

Only classifier network weights are modified to minimize
the loss. We perform the experiments twice with two dif-
ferent datasets as mentioned in Sect. 3.2. The details of our
experiments are given following this section.

Finally, the trained model is used to classify a completely
unknown set of images constituting the test set, into two
classes, viz. Authentic and Spliced. The generalization capa-
bility of the proposed model is recorded in terms of the
following evaluation metrics: Binary Accuracy, Precision,
Recall, F1 Score and AUC. These metrics have been defined
and described in more detail in Sect. 4.

Experiment 1. Here we take the entire CASIA v2.0 dataset
of 12,614 images in order to train and evaluate our model.

Experiment 2. In this experiment, we repeat the entire
procedure with the sampled dataset of 10,246 images.

4 Experimental results and discussion
4.1 Performance of the proposed model

The basic evaluation parameters to evaluate the proposed
scheme may be defined as follows [23]:

True positive (TP): An outcome correctly predicted as a
Spliced Image.
True negative (TN): An outcome correctly predicted as an
Authentic Image.
False positive (FP): An outcome incorrectly predicted as
a Spliced Image.
False negative (FN): An outcome incorrectly predicted as
an Authentic Image.

The performance of the proposed model has been analyzed
and evaluated in terms of the following evaluation parame-
ters: Accuracy, Precision, Recall, F1 Score, and AUC Score.

— Accuracy is defined as the sum of the number of true
positives and true negatives divided by the total number
of samples. That is,

R #TP + #TN 0
ccuracy =
Y= ¥TP + #TN + #FP + #EN
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— Precision is the ratio of correct positive samples to the
number of actual positive samples.

. #TP
Precision = —— 2)
#TP + #FP

— Recall is the ratio of the number of correct positive sam-
ples out of those that were classified as positive.

#TP
Recall = ————— 3
#TP + #FN

— F1 Score is the harmonic mean of Precision and Recall.

Precision x Recall
F1 Score = 2 x — 4
Precision + Recall

— AUC suggests the area under the ROC Curve.

Table 2 summarizes the performance of the proposed
model in Experiments 1 and 2 (on the two datasets described
in Sect. 3.3). It is evident from Table 2 that the model while
being trained on the entire CASIA v2.0 dataset performs bet-
ter from all perspectives and yields an Accuracy of 0.9645,
Precision of 0.9669, Recall of 0.9415, F1-Score of 0.9540,
and an AUC score of 0.9755. In Fig. 5, we present a bar dia-
gram depicting a comparative performance analysis of the
two experiments conducted. It is needless to mention that
our classifier model consists of a huge number of trainable
parameters. In Experiment 1, the model has a larger dataset
to get trained on, as compared to Experiment 2. This makes
the model more capable of generalizing the act of splicing
detection. Also, our experiments depict no major influence
of the classifier bias as mentioned in Sect. 3.1.

4.2 Comparison with state-of-the-art

Here, we perform a comparative analysis of the performance
of our model with state-of-the-art schemes. Specifically, the
comparison is drawn with the following methods:

1. Image forgery detection using SPT and LBP by Muham-
mad et al. [16].

2. Markov features-based scheme in DCT domain by Pham
etal. [18].

3. Detecting splicing in digital photographs using high rep-
resentational capacity of Illuminant Maps and CNN by
Pomari et al. [20].
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Fig. 5 Comparison and performance analysis of Experiment 1 and
Experiment 2, as discussed in Sect. 3.3

4. Texture feature criterion and Fuzzy SVM based splicing
detection scheme by Tripathi et al. [21].

5. Using DMVN for the localization and detection of image
splicing by Wu et al. [11].

6. Markov features-based scheme dealing with DCT and
DWT domain by He et al. [24].

7. Markov features-based scheme in QDCT and QWT
domain by Wang et al. [25].

Our comparison results are presented in Table 3. The
results included in Table 3 are based on those reported by
the authors in their original papers mentioned above.

The comparison results presented in Table 3 illustrate that
the proposed scheme outperforms most of the other state-
of-the-art techniques [11,20,21,24,25] in terms of splicing
detection efficiency. The schemes presented in [16] and [18],
slightly outperform our method (by 0.88% and 0.45% accu-
racy, respectively) in terms of forgery detection accuracy.
However, it is worth mentioning here that such methods
as the above two are based on texture/frequency domain
feature extraction (like steerable pyramid transform (SPT),
local binary pattern (LBP), discrete cosine transform (DCT),
discrete wavelet transform (DWT), etc.), which is compu-
tationally much more intensive, given the tedious job of
handpicking those features. On the contrary, the proposed
method is completely based on automated feature learning,
which, given the right implementation platform, is capable
of optimizing manual intervention efficiently.

5 Conclusion and future work

With the advent of new digital technologies, the credibility of
digital images is becoming more and more vulnerable with
each passing day. Today, it is very easy to process a spliced
image, so that it is incredibly difficult for a human being to
detect the traces of forgery with naked eyes. In this paper,
we discuss the issue of detecting intelligent image splicing

Table 3 Comparison of performance with state-of-the-art

Methods Accuracy  Precision Recall  F1 score
Muhammad et al. [16]  0.9733 - - -

Pham et al. [18] 0.9690 - - -
Pomari et al. [20] 0.96 - - -
Tripathi et al. [21] 0.89 0.89 0.885 0.887
Wuetal. [11] 0.8708 0.9415 0.7909  0.8596
He et al. [24] 0.8976 - - -

Wang et al. [25] 0.92 - - -
Proposed 0.9645 0.9669 0.9415  0.9540

attack. We address why it is important today to have an auto-
mated measure that can effectively detect whether an image
is spliced, followed by proposing a novel approach to detect
image splicing, based on deep learning. A convolution neu-
ral net-based model is introduced in this paper to perform
automated feature engineering, saving the tedious task of
handpicking image features. To determine whether an image
is authentic or spliced, the feature vector is then fed to a
dense classifier network. The proposed model is trained, val-
idated, and finally, tested on CASIA v2.0, a standard dataset
for image splicing detection and related researches [26-28].
Our experimental results demonstrate that the perfor-
mance of the proposed model is superior to that of the state
of the art. However, it has its own limitations. This model can
only detect whether an image is spliced or not, but does not
involve localization of sliced regions within such an image. In
real-life cases, this is utmost important. This constitutes the
primary motivation of our future research in this direction.
Also, it would be interesting to explore whether the tampered
regions of the image can be restored from the knowledge of
location of forgery, in a computationally feasible way. This
opens up a huge scope of research in the given domain.
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