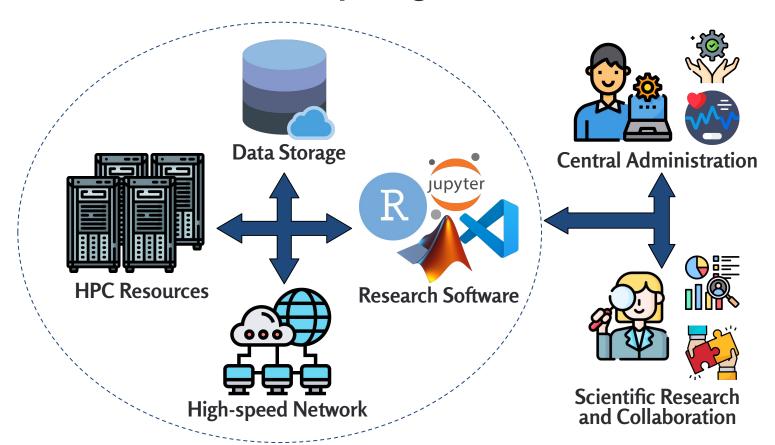
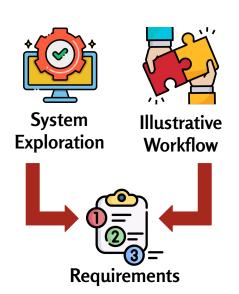
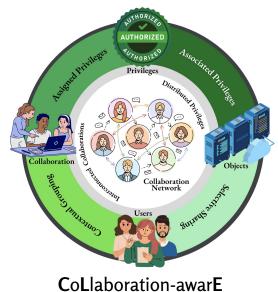
IEEE International Conference on Collaboration and Internet Computing (CIC), 2025

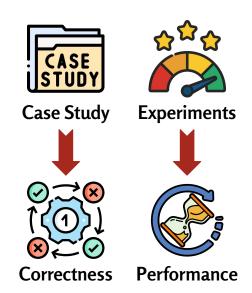
Towards Collaboration-Aware Resource Sharing in Research Computing Infrastructures

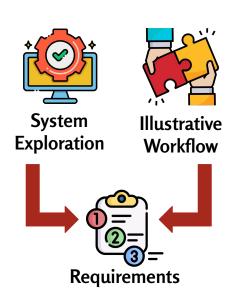

Souradip Nath, Ananta Soneji, Jaejong Baek, Carlos Rubio-Medrano, and Gail-Joon Ahn

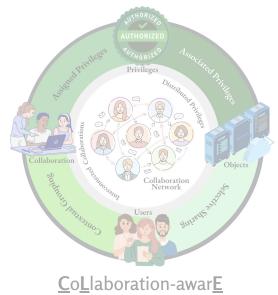

Research Computing Infrastructure (RCI)

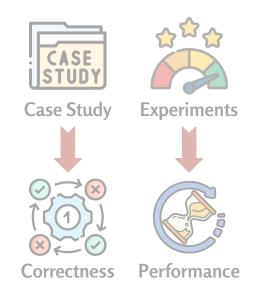

Research Questions

- **RQ1**: What are the **existing challenges** around access control and resource sharing practices within RCIs?
- **RQ2**: From an access control perspective, what unique requirements must be addressed to support effective and secure resource sharing in RCIs?
- RQ3: How can collaboration contexts be conceptualized, designed, and utilized to enable secure and flexible resource sharing authorization within RCIs?

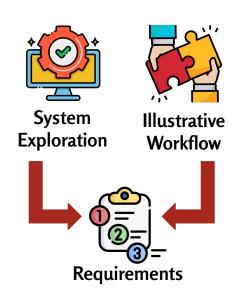

Requirement Elicitation


Design & Implementation


<u>CoL</u>laboration-awar<u>E</u> <u>Authorization for <u>Resource</u> <u>Sharing (CLEARS)</u></u>


Requirement Elicitation

Design & Implementation



<u>CoLlaboration-awarE</u> <u>Authorization for Resource</u> <u>Sharing (CLEARS)</u>

Requirements for Collaboration-Aware Resource Sharing

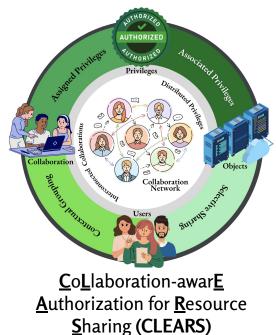
Requirement Elicitation

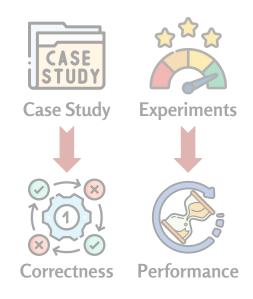
Selective Sharing

Selective Revocation

Automatic Revocation

Project-specific Sharing & Revocation




Uniform Interface for Resource Sharing

Requirement Elicitation

Design & Implementation

Overview of CLEARS

Projects and Collaboration

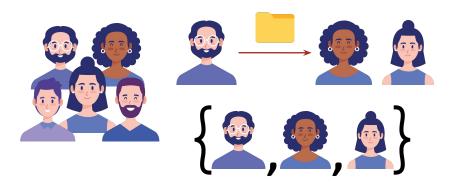
Users

Objects

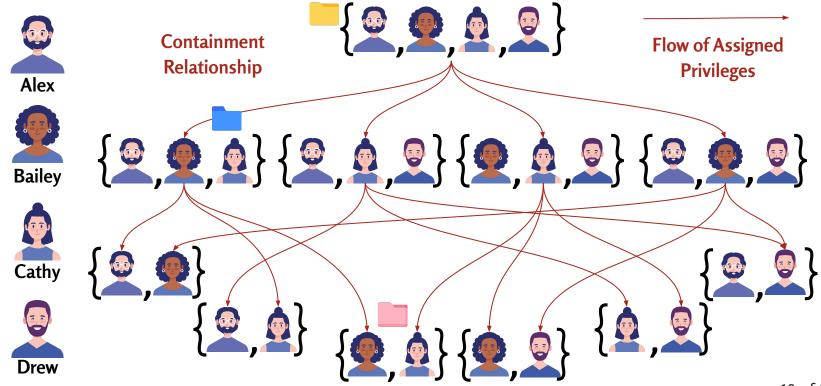
Privileges

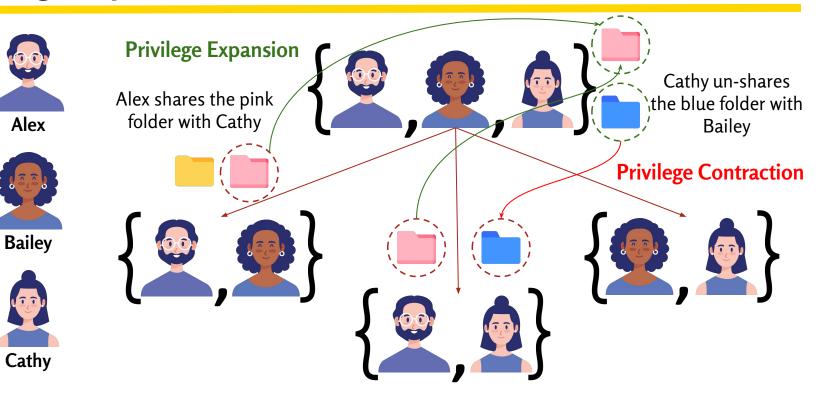
Flexibility in Privilege Assignment and Revocation

 $C_i = \{U_j \mid U_j \subseteq U_i, 2 \leq |U_j| \leq |U_i|\}$, a set of


Project

Collaboration


Privilege **Expansion &** Contraction


 $AP_i = \{(c_{ij}, p_k) \mid j \in \mathbb{N}, c_{ij} \in C_i \text{ and } p_k \in P\}$, a set of assigned privileges shared within project pr_i

Context-aware Privileges

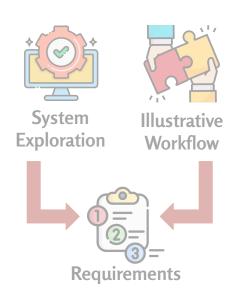
Collaboration Network

Privilege Expansion and Contraction

Overview of CLEARS: There's more!

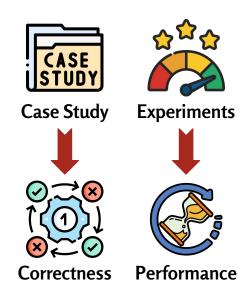
Model Functions

Authorization of Resource Sharing



Integration with Existing Models

Read the Paper!


Requirement Elicitation

Design & Implementation

<u>CoL</u>laboration-awar<u>E</u> <u>Authorization for <u>Resource</u> <u>Sharing (CLEARS)</u></u>

Correctness Evaluation

Collaborative Workflow-based Case Study

6

10

2

Users

Resources

Projects

- t=0: ProjectX, ProjectY start, and Users are added to projects
- t=1: Alice shares /scratch/alice with ALL in both projects
- t=2: Alice shares /data/alice with Bob, Connor in ProjectX
- t=3: Dave shares /scratch/dave with Alice, Connor in ProjectX
- t = 4: Alice shares alice partition 1 with Alex in ProjectY
- t=5: Bob shares /data/bob with only Alex in ProjectY
- t=6: Alice unshares /scratch/alice with ALL in ProjectX
- t=7: Alice unshares /scratch/alice with Alex, Drew in ProjectY
- t = 8: Alice unshares $alice_partition1$ with Alex in ProjectY
- t = 9: Dave leaves ProjectX
- t = 10: ProjectX and ProjectY end and Users are removed

Three Approaches of Resource Sharing

Group-only

User-centric

Role-based

Comparison Metric

Permit Decisions

Correctness Evaluation

t	No. of 'Permit' Decisions (out of 60 requests)				
-	G	U	R	CLEARS	GT
t = 0	10	10	10	10	10
t = 1	$15_{(+5)}$	$15_{(+5)}$	$15_{(+5)}$	$15_{(+5)}$	$15_{(+5)}$
t = 2	$18_{(+3)}^{\dagger}$	$17_{(+2)}$	$17_{(+2)}$	$17_{(+2)}$	$17_{(+2)}$
t = 3	$21_{(+3)}^{\dagger}$	$19_{(+2)}$	$19_{(+2)}$	$19_{(+2)}$	$19_{(+2)}$
t = 4	$24_{(+3)}^{\dagger}$	$20_{(+1)}$	$20_{(+1)}$	$20_{(+1)}$	$20_{(+1)}$
t = 5	$27_{(+3)}^{\dagger}$	$21_{(+1)}$	$21_{(+1)}$	$21_{(+1)}$	$21_{(+1)}$
t = 6	$25_{(-2)}$	$19_{(-2)}$	$19_{(-2)}$	$19_{(-2)}$	$19_{(-2)}$
t = 7	$22_{(-3)}^{\dagger}$	$19_{(-0)}^{\dagger}$	$17_{(-2)}$	$17_{(-2)}$	$17_{(-2)}$
t = 8	$19_{(-3)}^{\dagger}$	$18_{(-1)}^{\dagger}$	$16_{(-1)}$	$16_{(-1)}$	$16_{(-1)}$
t = 9	$18_{(-1)}^{\dagger #}$	$18_{(-0)}^{\dagger \#}$	$16_{(-0)}^{\dagger \#}$	$14_{(-2)}$	$14_{(-2)}$
t = 10	$10_{(-8)}$	15 ₍₋₃₎ †#	16(-0) †#	10(-4) *#	$10_{(-4)}$

t = 0: ProjectX, ProjectY start, and Users are added to projects

t=1: Alice shares /scratch/alice with ALL in both projects

t=2: Alice shares /data/alice with Bob, Connor in ProjectX

t=3: Dave shares /scratch/dave with Alice, Connor in ProjectX

t = 4: Alice shares $alice_partition1$ with Alex in ProjectY

t = 5: Bob shares /data/bob with only Alex in ProjectY

t = 6: Alice unshares /scratch/alice with ALL in ProjectX

t=7: Alice unshares /scratch/alice with Alex, Drew in ProjectY

t=8: Alice unshares $alice_partition1$ with Alex in ProjectY

t = 9: Dave leaves ProjectX

t=10: ProjectX and ProjectY end and Users are removed

Group-only Approach (G):

- Maintains context, each group represents a project
- * Too coarse-grained
- **X** Either too permissive or too restrictive

User-centric Approach (U):

- ✓ Allows for flexible resource sharing (User-to-User)
- * Allows for ad hoc sharing, no context
- Lack of context makes revocation an issue

Role-based Approach (U):

- ✓ Allows for flexible resource sharing and revocation
- * Lack of context-awareness, context adds overhead
- Revocation is still manual

[✓] Matches with the ground truths at each consequent step (green).

[†] Mismatches with the ground truths at each consequent step (red).

[#] Manual revocation of privileges is not assumed.

Performance Evaluation

Random Workload-based Experiments

20→100 100

Users

Resources

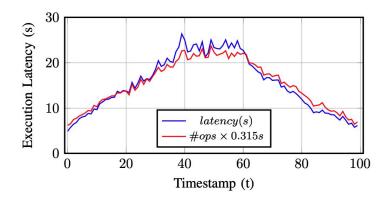
100

Timestamps

0-39

40-59

60-99


Ramp-up

Steady-state

Wind-down

Metric	Action	Mean
Minimum Latency	Share	166
	Unshare	159
Maximum Latency	Share	711
	Unshare	792
Mean Latency	Share	331
	Unshare	299

Future Work

Address Operational Concerns

- Investigate Race conditions, Atomicity of Share/Unshare operations, etc.
- Security of system-level mechanisms (e.g., JSON storage, setuid root helper, etc.)

Incorporate Multi-institutional Perspectives

- Explore scenarios involving multi-institutional infrastructures
- Address diverse regulatory and collaborative requirements

User Validation Study

- Incorporate feedback from potential stakeholders (e.g., researchers, admins)
- Explore integration with other access control models

Thank you

Read the Paper

GitHub Repo

Souradip Nath

snath8@asu.edu | souradipnath.com

